8-1 What are Exponential and Logarithmic Functions

Class

An exponential function is a function of the form $f(x)=b^{x}$, where the base b is a positive constant other than 1 and the exponent x is a variable. Notice that there is no single parent exponential function because each choice of the base b determines a different function.
(A) Complete the input-output table for each of the parent exponential functions below.

x	$f(x)=2^{x}$
-3	
-2	
-1	
0	
1	
2	
3	

x	$p(x)=10^{x}$
-3	
-2	
-1	
0	
1	
2	
3	

(B) Graph the parent functions $f(x)=2^{x}$ and $p(x)=10^{x}$ by plotting points.

(C) What is the domain of each function?

Domain of $f(x)=2^{x}:\{x \mid \square\}$
Domain of $p(x)=10^{x}:\{x \mid \square\}$
(E) What is the y-intercept of each function? y-intercept of $f(x)=2^{x}$: \square
y-intercept of $p(x)=10^{x}$: \square

(D) What is the range of each function?

Range of $f(x)=2^{x}:\{y \mid \square\}$
Range of $p(x)=10^{x}:\{y \mid \square\}$
(F) What is the trend of each function?

In both $f(x)=2^{x}$ and $p(x)=10^{x}$, as the value of x increases, the value of y increases/ decreases.

Reflect

1. Will the domain be the same for every exponential function? Why or why not?
2. Will the range be the same for every exponential function in the form $f(x)=b^{x}$, where b is a positive constant? Why or why not?
3. Will the value of the y-intercept be the same for every exponential function? Why or why not?

Exponential functions with bases between 0 and 1 can be transformed in a manner similar to exponential functions with bases greater than 1 . Begin by plotting the parent functions of two of the more commonly used bases: $\frac{1}{2}$ and $\frac{1}{10}$.
(A) To begin, fill in the table in order to find points along the function $f(x)=\left(\frac{1}{2}\right)^{x}$. You may need to review the rules of the properties of exponents, including negative exponents.
(B) What does the end behavior of this function appear to be as x increases?
(C)

Plot the points on the graph and draw a smooth curve through them.

(D) Complete the table for $f(x)=$ $\left(\frac{1}{10}\right) x$.
(E) Plot the points on the graph and draw a smooth curve through them.

x	$f(x)=\left(\frac{1}{2}\right)^{x}$
-3	8
-2	
-1	
0	
1	
2	
3	
x	$f(x)=\left(\frac{1}{10}\right)^{x}$
-3	1000
-2	
-1	
0	
1	
2	
3	

(F)

Fill in the following table of properties:

	$f(x)=\left(\frac{1}{2}\right)^{x}$	$f(x)=\left(\frac{1}{10}\right)^{x}$
Domain	$\{x \mid-\infty<x<\infty\}$	$\{x \mid \square$
Range	$\{y \mid \square\}$	
End behavior as $x \rightarrow \infty$	$f(x) \rightarrow \square$	$\{y \mid \square$
End behavior as $x \rightarrow-\infty$	$f(x) \rightarrow \square$	$f(x) \rightarrow \square$
y-intercept	\square	$f(x) \rightarrow \square$

(G) Both of these functions [decrease/increase] throughout the domain.
(H) Of the two functions, $f(x)=\left(\frac{1}{\square}\right)^{x}$ decreases faster.

Reflect

4. Make a Conjecture Look at the table of properties for the functions. What do you notice? Make a conjecture about these properties for exponential functions of the form $f(x)=\left(\frac{1}{n}\right)^{x}$, where n is a constant.
\qquad
\qquad
5. Make a Conjecture What is the difference between the graphs on Page 1 and the Graph on Page 2?

An exponential function such as $f(x)=2^{x}$ accepts values of the exponent as inputs and delivers the corresponding power of 2 as the outputs. The inverse of an exponential function is called a logarithmic function. For $f(x)=2^{x}$, the inverse function is written $f^{-1}(x)=\log _{2} x$, which is read either as "the logarithm with base 2 of x " or simply as "log base 2 of x." It accepts powers of 2 as inputs and delivers the corresponding exponents as outputs.
(A) Graph $f^{-1}(x)=\log _{2} x$ using the graph of $f(x)=2^{x}$ shown. Begin by reflecting the labeled points on the graph of $f(x)=2^{x}$ across the line $y=x$ and labeling the reflected points with their coordinates. Then draw a smooth curve through the reflected points.

B Using the labeled points on the graph of $f^{-1}(x)$, complete the following statements.

$$
\begin{aligned}
& f^{-1}(0.25)=\log _{2} \square \\
& f^{-1}(0.5)=\log _{2} \square \\
&=\square \\
& f^{-1}(1)=\log _{2} \square \\
&=\square \\
& f^{-1}(2)=\log _{2} \square \\
& f^{-1}(4)=\log _{2} \square \\
& f^{\square}=\square \\
& f^{-1}(8)=\log _{2} \square
\end{aligned}=\square
$$

6. Explain why the domain of $f(x)=2^{x}$ doesn't need to be restricted in order for its inverse to be a function.
\qquad
\qquad
7. State the domain and range of $f^{-1}(x)=\log _{2} x$ using set notation.
\qquad
\qquad
8. Identify any intercepts and asymptotes for the graph of $f^{-1}(x)=\log _{2} x$.
\qquad
\qquad
9. Is $f^{-1}(x)=\log _{2} x$ an increasing function or a decreasing function?
10. How does $f^{-1}(x)=\log _{2} x$ behave as x increases without bound? As x decreases toward 0 ?
\qquad
\qquad
