Name

8-1 What are Exponential and Logarithmic Functions

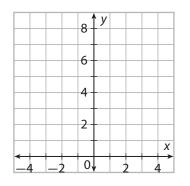
Class

An **exponential function** is a function of the form $f(x) = b^x$, where the base b is a positive constant other than 1 and the exponent x is a variable. Notice that there is no single parent exponential function because each choice of the base *b* determines a different function.

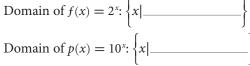
Complete the input-output table for each of the parent exponential functions below. (A)

		_		
x	$f(x) = 2^x$		x	$p(x) = 10^x$
-3			—3	
-2			-2	
—1			—1	
0			0	
1			1	
2			2	
3			3	

(B) Graph the parent functions $f(x) = 2^x$ and $p(x) = 10^x$ by plotting points.



(C)What is the domain of each function?

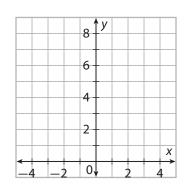


What is the *y*-intercept of each function?

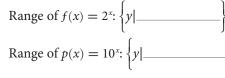
y-intercept of $f(x) = 2^x$:

(E)

y-intercept of $p(x) = 10^x$:



(D) What is the range of each function?



(F)What is the trend of each function?

> In both $f(x) = 2^x$ and $p(x) = 10^x$, as the value of *x* increases, the value of *y* increases/ decreases.

Reflect

- 1. Will the domain be the same for every exponential function? Why or why not?
- 2. Will the range be the same for every exponential function in the form $f(x) = b^x$, where *b* is a positive constant? Why or why not?
- **3.** Will the value of the *y*-intercept be the same for every exponential function? Why or why not?

Exponential functions with bases between 0 and 1 can be transformed in a manner similar to exponential functions with bases greater than 1. Begin by plotting the parent functions of two of the more commonly used bases: $\frac{1}{2}$ and $\frac{1}{10}$.

- A To begin, fill in the table in order to find points along the function $f(x) = \left(\frac{1}{2}\right)^x$. You may need to review the rules of the properties of exponents, including negative exponents.
- B What does the end behavior of this function appear to be as *x* increases?
 - Plot the points on the graph and draw a smooth curve through them.

(C)

(E)

	<u></u>	r l	
	6-		
	4		
	2 -		
			x
-4 -:	2 0	2	4

Complete the table for $f(x) = \left(\frac{1}{10}\right)x$.

Plot the points on the graph and draw a smooth curve through them.

		ţу			
	8 -		 		
	6				
	4				
	2				
					X
-4 -2	0		2	4	1

x	$f(x) = \left(\frac{1}{2}\right)^x$
—3	8
-2	
—1	
0	
1	
2	
3	

x	$f(x) = \left(\frac{1}{10}\right)^x$
-3	1000
—2	
—1	
0	
1	
2	
3	

Fill in the following table of properties:

	$f(x) = \left(\frac{1}{2}\right)^x$	$f(x) = \left(\frac{1}{10}\right)^x$
Domain	$\left\{ x \mid -\infty < x < \infty \right\}$	
Range		
End behavior as $x \to \infty$	$f(x) \rightarrow$	$f(x) \rightarrow$
End behavior as $x \to -\infty$	$f(x) \rightarrow$	$f(x) \rightarrow$
y-intercept		

(G) Both of these functions [decrease/increase] throughout the domain.

(H) Of the two functions,
$$f(x) = \left(\frac{1}{\left(\frac{1}{x}\right)^{x}}\right)^{x}$$
 decreases faster.

Reflect

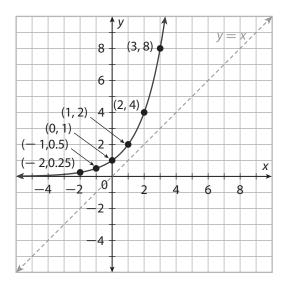
4. Make a Conjecture Look at the table of properties for the functions. What do you notice? Make a conjecture about these properties for exponential functions of the form $f(x) = \left(\frac{1}{n}\right)^x$, where *n* is a constant.

5. Make a Conjecture What is the difference between the graphs on Page 1 and the Graph on Page 2?

Understanding Logarithmic Functions as Inverse of Exponential Functions

An exponential function such as $f(x) = 2^x$ accepts values of the exponent as inputs and delivers the corresponding power of 2 as the outputs. The inverse of an exponential function is called a **logarithmic function**. For $f(x) = 2^x$, the inverse function is written $f^{-1}(x) = \log_2 x$, which is read either as "the logarithm with base 2 of x" or simply as "log base 2 of x." It accepts powers of 2 as inputs and delivers the corresponding exponents as outputs.

Graph $f^{-1}(x) = \log_2 x$ using the graph of $f(x) = 2^x$ shown. Begin by reflecting the labeled points on the graph of $f(x) = 2^x$ across the line y = x and labeling the reflected points with their coordinates. Then draw a smooth curve through the reflected points.



Explore

Using the labeled points on the graph of f⁻¹(x), complete the following statements.



- 6. Explain why the domain of $f(x) = 2^x$ doesn't need to be restricted in order for its inverse to be a function.
- 7. State the domain and range of $f^{-1}(x) = \log_2 x$ using set notation.
- 8. Identify any intercepts and asymptotes for the graph of $f^{-1}(x) = \log_2 x$.
- **9.** Is $f^{-1}(x) = \log_2 x$ an increasing function or a decreasing function?
- **10.** How does $f^{-1}(x) = \log_2 x$ behave as *x* increases without bound? As *x* decreases toward 0?